The surgical treatment phase started with extraction of tooth #16, followed by excision of the root cyst and alveolar curettage (Figs. 4a & b). For good disinfection of the alveolus, ozone therapy (Ozone DTA, Apoza) was applied (Fig. 4c), taking into account the antimicrobial action of ozone, which prevents the development of the inflammatory process, favours cellular recovery and consequently improving the post-surgical healing. Once the teeth had been disinfected, the implant bed was prepared with a sequence of drills from the surgical system (AnyRidge Surgical Kit, MegaGen, Fig. 4d). The bone defects were filled with a bone xenograft of porcine origin (Gen-Os, Os- teoBiol), mixed with i-PRF (injectable platelet-rich fibrin, PRF process by Choukroun, Figs. 5a & b). Afterwards, bone densification was performed through a sequence of Denasn drills (Denasn Burs, Vernah, Fig. 6a). This type of drill allows the clinician to perform a bone densification process.

Once the implant bed had been prepared, a 7 × 10 mm implant (AnyRidge) was placed. After placement, the IQS (Implant Stability Quotient) was measured with a stability meter (Mega SQ, MegaGen), and the value was 72. According to the IQS scale, this represents high stability (Fig. 6b). A 7 × 10 mm healing screw (AnyRidge, Figs. 6c & d) was applied, together with an Alginate plug of A-PRF (advanced platelet-rich fibrin, PRF process by Choukroun) in order to accelerate the healing process, and sutured with 4/0 polypropylene (6-0 Fury, Figs. 7-10). After the surgical procedure, the White Clinic postoperative protocol started. An impression was taken using T-Scan technology (Tekscan, Figs. 11a & b). The information was sent to a milling lab, where a crown was designed using a CAD/CAM system (Amann Girrbach) and the information was sent to a milling machine (MegaGen; Figs. 11a & b). The definitive crown (monolithic zirconium, Carestream Dental) was milled (Fig. 12).

Discussion

The main success indicator for dental implants is primary stability, which is one of the prerequisites for achieving osseointegration. This is affected by factors such as bone quantity and quality, surgical placement procedure, and implant shape and coating.

This stability can be measured with a device that analyses the resonance frequency of the implant after its placement. The software converts the received hertz waves to a numerical value called ISQ on a scale ranging from 1 to 100. The manufacturer’s instructions suggest that a stable implant has an ISQ higher than 65 and an unstable implant less than 50. However, these values differ from one author to another.

Nowadays, we have several options that can help us achieve a successful rehabilitation with implants. One of them is the use of a fibrin membrane rich in platelets (PRF). This has the ability to reduce the healing period and improve bone regeneration. The use of PRF as a covering membrane allows rapid epithelisation of the site surface and represents an effective barrier against the penetration of epithelial cells within the bone defect. Furthermore, positive effects on the percentage of healthy cells, therefore also increasing the success rate of implants.

Ozone and Alaaeddinoga evaluated the impact of implant coating with L-PRF (leukocyte– and platelet–rich fibronectin). The stability of the implant was measured by ISQ. The use of L-PRF in the implant insertion resulted in statistically significant ISQ values that continuously increased over time. Boora et al reported early bone remodeling around implants coated or not with L-PRF at the insertion. Implants coated with L-PRF showed 50% less initial bone loss after both one and three months, respectively. Nowadays, centrifugation protocols have been optimised, as the low speed concept of centrifugation, resulting in A-PRF and i-PRF. These new protocols seek to obtain a greater number of platelets, in order to increase the healing capacity, and leukocytes, therefore also increasing the regenerative capacity.

Furthermore, positive effects on bone regeneration after implant surgery have been suggested when PRF is applied. Given its ease of preparation, low cost and biological properties, PRF can be considered as a reliable treatment option. Although the application of PRF during implant placement or for the treatment of peri-implant defects is quite recent, several studies have already shown clinical benefits, such as higher ISQ values and marginal bone resorption.

Another technique that has proven to be an asset in the success of oral rehabilitation with implants is ozone therapy. This ozone-based tool has an antibacterial effect resulting from the oxidative action on cells, damaging the cytoplasmic membranes of certain organisms, such as bacteria, viruses, fungi and parasites, without, however, the ability to damage healthy human cells. Thus, ozone has the following advantages: accelerates the healing of soft tissue (reduces the rate of physiological healing), controls opportunistic infections, reduces scarring time after extraction (forms a pseudomembrane over the alveolus and protects it from physical and mechanical aggression) and aids in bone regeneration.

Another literature suggests that ozone after extraction/socket must be prepared conventionally and disinfected with ozone for about 40 seconds, followed by placement of the implant. In this way, we avoid infections and improve bone regeneration.

In modern-digital dentistry, the four basic phases of work imitate image acquisition (through scanning), data preparation/processing (through CAD/CAm systems), and clinical application on patients. The dental preparation can...
Philips Sonicare pulses water between teeth for a complete clean you can feel

Developed with dentists for 25 years, Philips Sonicare’s 62,000 brush movements per minute break up plaque whilst waves of water sweep it away. It’s tough on plaque, gentle on gums. That’s why it’s caring by design. There’s always a way to make life better.

For more information, please contact
Castle General Trading
Tel: +971 4 3328795
cgt@emirates.net.ae
be scanned outside the oral cavity, on the plaster model, or inside the oral cavity by an intraoral scanning system. Optical impressions have several advantages over conventional impressions. Among them, the most important is the reduction of patient stress and discomfort. Moreover, they are time-efficient and can simplify clinical procedures for the dentist, especially for complex impressions (in patients with undercuts and/or in oral implantology, when multiple implants are present). In addition, optical impressions eliminate plaster models, saving time and space, and allow for better communication with the dental technician. Finally, optical impressions improve communication with patients and are therefore a powerful marketing tool for the modern dental clinic.

Regarding accuracy as compared with conventional impressions, optical impressions are equally accurate for individual restorations or three- to four-unit bridges on natural teeth and on implants. Conversely, conventional impressions still appear to be the best solution currently for long-span restorations, such as fixed full prostheses on natural teeth and implants (with a higher number of prosthetic abutments). Significant differences in trueness have been found among different optical impressions. For each scanner, the trueness was higher in a partially edentulous model than in a fully edentulous model.

Conversely, the disadvantages of using optical impressions are the difficulty in detecting deep margins in prepared teeth and in the case of bleeding, the learning curve, and the purchasing and maintenance costs.

Nowadays, we also have the possibility to superimpose the information related to the teeth and gingivae, received from the intraoral scan, over the bone-related information acquired with CBCT. It is therefore possible to plan the optimal positioning of implants with software to guide the surgery. Planning data is transferred to a surgical template that can be physically fabricated in various ways and with different materials. This guide will help the surgeon correctly position the implants without needing to raise a flap.

After obtaining the digital model, we proceed to the preparation of the virtual part through the CAD software that defines the geometry of an object, while CAM programming directs the fabrication process. The CAD/CAM process eliminates current conventional processes, such as the melting and subsequent manipulation of the material after the mechanical working of the same. Pieces made by the CAD/CAM process have a more precise fit compared with conventional methods for dental prosthetic manufacture.

The main concern with CAD/CAM restorations lies in the marginal fit. However, nowadays CAD/CAM parts show an adaptation with gaps of only around 40 μm.

Conclusion

The use of new technologies in dentistry, such as the application of PRF, ozone therapy and intraoral scanners, has contributed significantly to the success of rehabilitation with dental implants, reducing the time for implant placement and for their restoration.

Editorial note:

A list of references can be obtained from the publisher.

This article was originally published in CAD/CAM international magazine of digital dentistry, issue 3/2018.

Dr. Miguel Stanley
Rua Dr. António Loureiro Borges, ed. 5, 1st Andar Arquiparque
Miraflores
1495-131 Algés, Portugal
Phone: +351 21 396 2727
info@whiteclinic.pt

Fig. 5a
Fig. 5b
Fig. 6a
Fig. 6b
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11a
Fig. 11b
Fig. 11c
Fig. 12
Fig. 13a
Fig. 13b
Fig. 13c
Fig. 13d
Fig. 13e
Fig. 14
Fig. 15a
Fig. 15b
Fig. 15c
Fig. 15d
Fig. 15e
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Certificate & Diploma in Clinical Endodontics

From British Academy of Restorative Dentistry

DUBAI دبي 2019-2020

Group 3
Registration Open
Pathway to UK Masters
168 CME & Daily Hands-on

Group 3 started on 21 March 2019. A delegate could start the programme from Module 2 (19-22 June 2019) and compensate Module 1 with Group 4. As the modules are not required to be completed in a consecutive way, this will not impact the learning experience of the delegates in anyway.

Certificate | 3 Modules | 12 Days

Module 1 | 21-24 March 2019 (4 days) | Fundamental of Endodontics
Programme outline: Introduction to contemporary endodontics. Understanding of instrument design and its effect on prevention of iatrogenic errors.
Hands-on: Hand filing and lateral compaction techniques.

Module 2 | 19-22 June 2019 (4 days) | Aetiology and Diagnosis of Endodontic Disease
Programme outline: Microbiology of endodontic disease and its relationship with the host immune response.
Hands-on: Rotary Niti and advanced thermoplastic obturation techniques.

Module 3 | 12-15 September 2019 (4 days) | Traumatic Injury, Pain and its Management
Programme outline: Emergency endodontics and diagnosis in depth. Odontogenic and non-odontogenic pain. Diagnosis and management.
Hands-on: Rotary NiTi and thermoplastic obturation techniques.

Diploma | 3 Modules | 12 Days

Module 4 | December 2019 (4 days) | Dental Resorption and Pattern of Tooth Fracture & Implant Prosthodontics
Programme outline: Understanding advanced endodontic problems. Handling endodontic failure alternatives related to implants.
Hands-on: Reciprocating Niti and Carrier based thermoplastic obturation techniques & Implant prosthetic and surgery on phantom heads.

Module 5 | March 2020 (4 days) | Restoration of Endodontically Treated Teeth
Hands-on: Placement of core restorations and post retained restorations.

Module 6 | June 2020 (4 days) | Management of Endodontic Failure
Programme outline: Endodontic retreatment, surgical endodontics.

+971 528423659 | p.mollov@cappmea.com
www.cappmea.com/endo
Revolutionary Technology in Additive Manufacturing – by 3D Systems

By 3D Systems

NextDent™ 5000 by 3D Systems, a high-speed 3D printer – powered by Figure 4™ technology helps dental laboratories and clinics redefine their workflow to achieve improved accuracy, repeatability and productivity with lower total cost of operation. When used in conjunction with the company’s robust portfolio of certified NextDent materials, dental labs and clinics are able to address the broadest range of indications from a single printer available today. This plug-and-play solution integrates with the industry’s state-of-the-art intra-oral scanning and software solutions delivering a much more precise result than available with manual production. The benefits of the NextDent 5000 solution extend to the patient – reducing the number of office visits needed to complete treatment. This end-to-end technology, Dental Arts Laboratories has been able to achieve print speeds more than 4X faster than comparable printers – completing print runs for some indications in as little as 28 minutes. 3D Systems’ 3D Sprint software, which is bundled with the NextDent 5000, provides Dental Arts Laboratories with a complete CAD optimization and print management tool, helping to more efficiently produce dental devices.

The NextDent 5000 is powered by 3D Systems’ proprietary Figure 4™ technology, which facilitates high-speed 3D printing of dental devices and fixtures. The printer is compatible with industry-leading, intra-oral scanning and dental software solutions, delivering more precise results than conventional manual production techniques. This end-to-end digital workflow also provides higher and more predictable uptime, with a significant reduction in risk for the operator.

3D Systems is also providing 18 new NextDent materials for an unprecedented total of 50 different options. All NextDent materials are biocompatible and CE-certified to cover a broad range of dental applications for lab managers, dental technicians, dental prosthetic technicians and clinical prostodontists and orthodontists.

“As of this week, we’re shipping the NextDent 5000 for Dental. I’m pleased with how it has performed through the testing phases, and that dental labs and clinics are seeing the power of 3D printers redefine digital dentistry,” said Vayomesh Joshi, president and chief executive officer, 3D Systems. “With the addition of these printers, our customers and clinics of every size to improve their service and competitive-ness with more accurate dental devices, delivered faster than ever before.”

For further information, please contact:

3D Middle East, 3D Systems Distributor
Suite 3204 Poizen Towers, Business Bay, P.O Box 28823, Dubai, U.A.E
Tel: +971 4 443 3853
Email: info@3d-me.com
Web: www.3d-me.com

Why occlusion matters?

By Vivek Gupta, UK

Occlusion is the cornerstone of successful dentistry, however, it is also perhaps the most misunderstood subject in dentistry. Why do restorations done with occlusal understanding last the test of time, whilst a lack of occlusal understanding causes iatrogenic damage to patients?

Knowing the theory of levers will allow dentists to explain clearly and logically to patients such that consent given is informed and legally correct choices, whilst allowing the clinician to practice defensive but correct dentistry.

Knowing the theory of levers will allow dentists to plan correctly and logically to patients such that consent given is informed and legally correct choices, whilst allowing the clinician to practice defensive but correct dentistry.

Knowing when to use splint therapy, types of spilters and duration and protocol of treatment will allow you to provide excellent care for all your patients bringing a whole new area of treatment available for your patients.
Certificate & Diploma in Clinical Implantology

From British Academy of Dental Implantology & British Academy of Restorative Dentistry

Faculty Leads:

- Prof. Gesine Lide, Sweden
- Prof. Paul Tipton, UK
- Prof. Anna Al-Sayed, Saudi Arabia
- Prof. Christer Dahlén, Sweden
- Dr. Munir Silwadi, UAE

IMPLANT SYSTEM SPONSOR: neoss®

DUBAI 2019-2020

15 Implants & Lab Work Included
Live Treatment Hands-On (40%)
Group 3 Registration Open

Certificate | 3 Modules | 12 Days
Module 1 | 25-28 June 2019 (4 days) | Basics of Implantology
Programme outline: implant market, osseointegration, treatment alternatives, treatment planning and patient selection, basic surgical techniques and protocols. Hands-on training: surgical techniques and medicolegal aspects to implant dentistry.

Module 2 | 31 October - 03 November 2019 (4 days) | Treatment Planning and Surgical Treatment
Programme outline: implant design, radiographic techniques, implant surgery, implant specific treatment planning. Basic practice management.

Module 3 | 22-26 January 2020 (4 days) | Restorative Aspects of Implantology
Programme outline: restorative techniques, prosthetic hands-on training, patient treatment, follow-up and oral hygiene, complications to avoid and treat. In depth practice management.

Diploma | 3 Modules | 12 Days
Module 4 | 16-19 April 2020 (4 days) | Immediate and Early Loading Concepts and Treatment of the Resorbed Jaw
Programme outline: tooth now concept, immediate and early loading concepts from single tooth to fully edentulous patients, severely resorbed jaws, sinus lift and ridge splitting techniques, hands-on training and live patient surgical treatment.

Module 5 | 11-14 June 2020 (4 days) | Medical Compromised Patient and Soft and Hard Tissue Management | Aesthetic and Restorative Challenging Patient
Programme outline: medications related osteonecrosis, GBR techniques, soft tissue management, implant aesthetics, ceramics and implants.

Module 6 | 03-06 September 2020 (4 days) | Rare Complications and Techniques
Programme outline: rare complications, combination implants and teeth, live patient treatment, written and oral examination and case presentations.

+971 528423659 | p.mollov@cappmea.com
www.cappmea.com/implant
Short cut in the digital fast track

By Dr Hyun-Jun Jung and Kyung-Sik Park, Seoul/South Korea

The shape of an anterior restoration significantly influences the symmetry of the gingival contours. Provisional restorations that have proved to be suitable both in terms of their function and aesthetics allow permanent restorations to be precisely manufactured with the help of digital methods.

Unfavourably positioned teeth and/or an asymmetric contour of the soft tissue represent a considerable challenge in the already difficult anterior zone. In order to achieve a natural-looking result, the shape and shade of the restoration have to be suitably matched to the remaining teeth and furthermore the soft tissue needs to be properly conditioned. In many cases, provisional restorations are initially used by the dental team so that the special requirements of the gingiva can be effectively addressed.

Case study

The 35-year-old patient consulted our practice about having defective dental braces removed after three years of orthodontic treatment. He asked us to treat the carious lesions in his teeth and enhance the appearance of his smile. The first aesthetic analysis revealed an unfavourable length-to-width ratio of the anterior teeth (Fig. 1). As a result, the patient wished to have his front teeth lengthened. The upper left canine had to be endodontically treated due to advanced necrosis of the pulp tissue.

Planning

Our plan was to reconstruct the upper anterior teeth. In choosing the most suitable material for the restoration, we had to take into account the fact that the patient enjoyed eating hard nuts. Furthermore, he reported that he had a habit of grinding his teeth at night and clenching his jaws. Consequently, the anterior crowns would have to be not only functional and aesthetic but also very strong and tough. We planned to use six all-ceramic crowns to optimise the length-to-width ratio (tooth lengthening) and even out the gingival contours.

Manufacturing technique and selection of the materials

In order to minimize the risk of fracture of the ceramic restorations, we decided to use IPS e.max Press lithium disilicate ceramic, which demonstrates a high toughness of 470 MPa as well as excellent aesthetics. In addition to the monochrome press ingots, this ceramic system includes a polychromatic material (Fig. 2). IPS e.max Press Multi ingots are used to fabricate highly aesthetic monolithic restorations that do not need any characterization. They feature a lifelike progression of the shade and translucency between the dentin and incisal areas.

The press technique, which involves the use of a full-contour wax-up, offers a quick and uncomplicated method of manufacturing crowns. Moreover, the press technique allows us to reproduce delicate gingival contours with utmost precision. In restorations that are built up in layers, the ceramic sometimes shrinks, making it difficult to accurately replicate the gingival contours of the provisional. In our opinion, the IPS e.max Press Multi ceramic has two decisive advantages. First of all, its true-to-nature shading imitates that of natural teeth in the cervical and in the incisal region. In contrast to the restorations pressed with monochrome ingots, the polychromatic restorations require less time and effort to fabricate, since they do not have to be customized with layering ceramics in the incisal region. Secondly, IPS e.max Press Multi has just the right translucent properties to allow the necessary transmission of light.

Clinical treatment

First, endodontic treatment was performed and the carious lesions were removed. Then the teeth were restored with composite fillings. The front teeth requiring treatment were suitably prepared (Fig. 3) and the provisional crowns were placed (Fig. 4). The right lateral incisor was lengthened. The provisional crowns helped to support the gingival contours and establish a symmetric appearance. Once the desired symmetry of the teeth and gingival tissue was attained, the teeth were prepared for the permanent restorations (Fig. 5) and impressions were taken.

CAD/CAM processes in the fabrication of restorations

Prior to the removal of the provisional crowns, additional precision impressions were taken. In the laboratory, the data of the preparation models and the provisional crown models was captured using the double scan method. The digital data sets were superimposed on each other.

Fig. 1: Preoperative view

Fig. 2: IPS e.max Press Multi ingot shade A2

Fig. 3: Situation after the removal of caries lesions and root canal treatment

Fig. 4: Provisional composite resin restorations for evaluating their function and aesthetics

Fig. 5: Final preparation of the teeth

Fig. 6: Scanned data of the final preparation

Fig. 7: Superimposed scanned data of the prepared model and the model with the provisional crowns

Fig. 8: Slight adjustments during the design phase

Fig. 9: ProArt CAD Wax yellow disc

Fig. 10: CAD/CAM-manufactured 09 — ProArt CAD Wax yellow disc full-contour wax crowns

Fig. 11: Full-contour wax crowns attached to the IPS Multi investment ring base and verification of the position of the wax crowns with the help of the IPS Sprue Guide

Fig. 12: Completed crowns on the model
ZirCAD MT Multi
The most esthetic high-strength, multi-translucent\(^1\) zirconia

\(^1\) Composed of different material classes
The abutment teeth were separated and the margins and contours were adjusted (Figs 6 to 8).

This approach allowed the shape of the provisional crowns to be exactly replicated. We focused on recreating the subgingival contours, which support the oral soft tissue, so that the restorations would not have to be individually adjusted in the dental office. The crowns were milled from a dimensionally stable wax disc.

ProArt CAD Wax yellow was used in the present case (Figs 9 and 10). This material is specially designed for use with IPS e.max Press. The smooth surfaces of the wax ensure precision results and high accuracy of fit. The material burns out without leaving any residue. Up to this point, it was possible to reduce the manual work to a minimum.

Spruing and pressing
In the next step, the wax crowns were reproduced with a pressed ceramic (IPS e.max Press Multi). For the investment procedure, the milled wax crowns were attached to a special prefinished precision wax component (IPS Multi Wax Pattern). At this stage, it is important to make sure that the attachment joint is not too thick and that it is aligned with the lateral surface. This helps to accentuate the unique shade characteristics of the material. The wax restoration attached to the Wax Pattern was subsequently secured in the slot of the IPS Multi investment ring base. The position of the spurs was checked with the help of the IPS Spur Guide (Fig. 11). The shade progression within the crown can be adjusted as required. For example, if the incisal portion should be more pronounced, the Wax Pattern is simply moved downward on the investment ring base (max. 2 mm). The preheating, pressin and divestment steps were carried out in the customary way and in line with the instructions of the manufacturer.

Finishing
The present restorations can be adjusted if desired in order to accentuate certain individual characteristics.

In the present case, the unglazed restorations were tried in the patient’s mouth before the stains and glaze firing. At this stage, most of the clinically important properties were clearly recognizable: tooth axes, suitable pressure on the adjacent soft tissue (e.g. papillae and gingival contour), harmony of the lip line and inter-eradic al edges as well as the symmetry of the crowns. The patient was satisfied with the optimised length-to-width ratio of the teeth. The main aim now was to reproduce this situation with utmost precision. The interocclusal record was sent to the laboratory in order to minimize the work involved in the adjustment of the occlusion. The surface texture of the IPS e.max Press Multi crowns was created with suitable grinding instruments before the glaze firing cycle. The restorations were then characterized with IPS Incolor stains (copper, white and anthracite) and glazed. The crowns were manually polished to the desired brilliant sheen (Fig. 12).

Placement
The excellent collaboration of the dentist, dental technician and the patient paid off. The restoration was swiftly placed in the practice without having to make any further adjustments. The clinical situation which was created on the model and with the help of provisional restorations could be successfully reproduced in the permanent restoration (Fig. 13). The patient and the dental team were highly satisfied with the result. The entire treatment process was straightforward and efficient.

Reliable planning for an optimal workflow

By Dentsply Sirona

Part of creating an optimal workflow involves the ability to reliably plan for variables that differ with each patient. 3D imaging gives the clinician the ability to view anatomical structures not seen in two-dimensional images. The following case study involving a male patient in need of a restoration shows the advantages of utilising 3D imaging and an integrated digital workflow.

Methods
In this case, an Orthophos SL 3D from Dentsply Sirona was used for both panoramic and DVT scans. Digital impressions of the patient were taken with a CEREC camera and implant planning took place within the Galileos Implant software. For guided surgery, the team used CEREC Guide 5 milling in-house at their dental laboratory on an inLab MC X5 milling machine.

Case Study
A 52-year-old male patient presented to our practice with a gap in the area of teeth 45-47. He wanted this area restored. We used the Orthophos SL 3D to take a panoramic scan for planning purposes.

The patient opted for a treatment plan involving the insertion of two implants and then an implant-supported bridge. Digital imaging, combining DVT with CEREC optical impressions were used to plan the implant surgery in Galileos Implant software. The software creates an implant proposal as well as enables planning of the alignment of the prosthesis. The ability to plan and perform virtual surgery allowed the team to maximise safety and minimise risk.

CEREC Guide 2 was chosen in the treatment plan and then milled in our practice to use during surgery.

An additional DVT image was made in the Orthophos SL’s Low Dose Mode as a check post-implantation. Hybrid abutments on the base for the final restoration were chosen.

Summary
Reliable planning makes for an efficient treatment while helping to minimize risk. 3D imaging is an important part of creating a solid plan and the integrated digital workflow offered by using the Orthophos SL along with relevant planning software saves time for the practitioner and is also efficient for the patient by reducing the number of times he/she has to come to the practice.

For more information contact:

Dentsply Sirona

21st fl. The Bay Gate Tower Business Bay, Al Sa’ada Street Dubai, United Arab Emirates Tel.: +971 (0)4 523 0600 Web: www.dentsplysirona.com/en E-mail: MEA-Marketing@dentsplysirona.com

E-mail: healdentalclinic@gmail.com

Seoul, South Korea

242, Gangseo-ro, Gangseo-gu

Heal Dental Clinic

309, Gangan Hillstate shopping center 242, Gangseo-gu, Gangseo-gu

E-mail: heal_dentalclinic@gmail.com

DIGITAL DENTISTRT

Page 22

Fig. 13: IPS e.max Press Multi restorations immediately after placement

Fig. 14-15: Result after one month in situ